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The Rauscher method is used to construct the steady-state resonance solutions 
of near-conservative nonautonomo~ multi-dimensional systems. It is assumed 

that the generating system has an analytic potential and admits of normaloscil- 
lations with rectilinear trajectories in configuration space. As is well known, 

the forced oscillations of systems with one degree of freedom in the resonance 
region are close to the natural oscillations of unperturbed conservative systems 

[1]. We present the possibility of generalizing this result to the multi-dimen- 
sional case, using the concept of normal forms of oscillations of conservative 
nonlinear systems 12, 31. By selecting special types of external actions it was 

shown in [4] that the resonance modes possess the properties of the normal oscil- 
lations of conservative systems. For sufficiently general types of external peri- 
odic perturbations of quasi-linear systems close to Llapunov systems, Malkin 
[5] has exhaustively studied the periodic modes. 

1. We consider the equations 

5, ** = fs (x1, 5?, . . . ,x,) -j- Eg, (x1, x2, . . . ,x,, a s= I, 2, . ..I n v.11 

Here E is a small parameter, f,, gs are analytic functions of xi, 22, . . . , a%; g, is 
a periodic function of t of period T. We assume that the unperturbed system is con- 

servative and admits of normal oscillations with rectilinear trajectories in con~g~ation 
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space : Xj" = Cjxn (j = 1, 2, . . . ,n - I), cj = const. For a certain amplitude 
let the period of the naturaI normal oscillations also equal T. The examination is car- 
ried out in a Cartesian coordinate system in which all Cj = 0 and “~ja = 0. In this 
system we denote 

2, = 2, fn = f, 671 = 6 

We look for a T-periodic solution of system (1.1) such that Z’ = 2’ (2) and t = 
t (x) are single-valued functions of 2 for principal values of t contained in the inter- 

val (0, T / 21. If such a solution exists, then the equations 

d"X 

y&- [x'(s)]2 -i- - ;; lf(JGh@) ,...,&-I(~)) +~g(~,~l(&.*,~ @))I= G.2) 

f, C-6 51 (4, 1.' r&z-1 (4) --I- 8 gs (3, Xl (4, .** ,X,-l (4, f (4) 

for determining the trajectories z, = z, (x) (s = 1, 2, . . . ,n -1) have meaning. 
We seek the variables x1, x2, . . , ,x,_~, x’, t in the form of power series in E and Z 

m 03 co 

5, = r; 5,r (z) El, 2’ = 2 XL’@) &I, t = 2 t, (z) &I CL 3) 
I=0 I=0 I=0 

We choose the boundary conditions the same as for the normal oscillations of conserva- 
tive systems 131. We look for the function z’ (x) in the following form: 

2.2 = 2 [h - F (x,x1(x), . . . , r,_l (x)) - EG (z, ZIG& . . . , t @))I X (1.4) 

Here p is the potential of the unperturbed conservative system ; the constant h and 

the function G are defined in the course of solving the problem. 
Such values x = X, and x = X, should exist for which x’ = 0. Taking (1.4) 

into account, we get that the relations 

h = F (X1,2~ 31 (X1,& .I. ~-1 (Xi,,)) + a G (Xr,e> tr, fX,,zL ,t (Xi,,)) (1.5) 

are fulfilled for the amplitude values z = X1,? . The condition 5’ (X1,,) = 0 toge- 

ther with Eqs. (1.2). leads to other relations 

dX 
6 
dr I x=xIvP 

= If&, 25d&,2), . f *, &-lfsl,,)) + (1.6) 

Eg (-~1,zAGL!)r f * * , t (Xl,2))1 = /,(X1,2, 5&G,*), . . * , 

..* ) %-I (x1,2)) -k Egs(x1,s 51 (XI, 2), . - - ,t (XI,?)) 

where (s = 1, 2, . . . ,n - 1) . In a conservative system conditions (1.6) signify that 
the trajectory is orthogonal to the maximal isoenergetic surface (1.5). In a conserva- 
tive system representation (1.4) follows directly from the energy integral. Since the 
original system (1.1) is nonconservative, conditions (1.4)-(1.6) are valid only for the 
steady-state resonance oscillations. 

If the periodic mode trajectory has been determined, then from the equation 

i’ = f ($7 $1 @), . . . ,x,-1 (x)) + & g (x, x1 (a$, . . . . 5,-l (2>, t (4) 

with initial conditions z (0) = Xl, Z’ (0) = 0 , we can obtain the quadrature 
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t = f (4, I(x) = \ 2-+ [h - F (Et xl (E), . . . , x,,_~ (E)) - (1.7) 
Xl 

EG (5,x1 (8, . . . , ~-1 (E), t (Q)P dE 

Hence it follows that the solution should satisfy the periodicity condition 

T = 21 (X,) (1.8) 

As the generating normal solution of the unperturbed conservative system of period 1 

we choose: z = x (t), xja = 0 (j = 1, 2, . . . . n - 1). The amplitudes Xx0, X,0 
of the generating solution and the constant ho can be found from the equations 

T-27 2-‘.‘g [h - F (E, 0, . . . , o)]-‘~~dj (1.9) 
Xi0 

h, = F (Xm 20, 0, . . . TO) (1.10) 

We assume that 

a) the root h, of Eq.(l,S)and the roots X1.?, Xzo of Eq. (1.10) are simple; 
b) the determinant A, + 0, rn = 0, 1, 2, .,. , (i&j is the Kroneckersymbol) 

A m = 6,im (m - I) I 2.p (1, 0, . ) 0) 
r+1 

+ 6,‘m j@) (I, 0 ,-**, 0) - (1.11) 

where the functions f(r), fs(r) contain only terms of the rth degree in 5, x1, x2, . . . , 

x,-l- In the quasi-linear case (r = 1) constraint (1.11) corresponds to excluding from 
consideration multiple frequencies in the generating system. Such a condition has been 

accepted when investigating Liapunov systems and near-Liapunov systems [SJ. 
We determine the function t, = to (2) by the quadrature 

If assumption (a) is valid, then for the principal values of to the function $0 = & (X) 
is a single-valued analytic function of 2 [l, 61. 

2. Assume that x,~ (x), t, (x), XL*(Z), 1 < k have been determined. In the kth 
approximation with respect to e we obtain the equation 

2 2 [h, - F (t, 0, . . . , O)] + -$f(x,O,...,O)= (2.1) 

n~$X,O,... ( O)Xj, + Nsk (x), s = 1, 2, -.. I n--l 
j=l 1 

where Nsk are known functions depending on IC,~ (x), tr (z) (I < k). Let us repre- 
sent the solution of (2.1) as a power series in z 

m 
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Substituting series (2.2) into Eqs, (2.1). we find that the coefficients A,j(“) and &&. 
are expressed in terms of each other in a one-to-one manner. All the quantities A#) 

can be expressed in terms of the 2 (n - 1) coefficients {&,@)} and {Asick)} (S = 

1, 2, . ..( n - 1). The unknown coefficients are uniquely obtained as power series in 

X 192 from the boundary conditions (1.6) corresponding to the k th approximation 

d”sh. 
-I 

(2.3) 

dz .X=X,,: -f(&,*, 0,. . . , 0) = y +x1,:!, 0, . . . T O) xjj;i (Xl, 2) t ~Ys;; (xl, 2) 

+1 
In this approximation the function G is determined from the equality 

k-l k-1 

here the constant of integration should be discarded. 

Having now picked out the terms of kth degree in E in (1.4) and (1.7) we find 
& = 2i (2) and 5:;’ = IC,;’ (x). Since the roots of Eqs. (1.9) and (1.10) are simple, 
there exists a value F = &Cl such that for all E < e, the roots of Eqs. (1.5) and (1.8) 

are simple in the kth and subsequent approximations with respect to E: p] . Then the 
power series for t/; = t/; (x) and x~’ = it.,;’ (x) are uniquely determined from (1.4) 

and (1.7). The trajectory 2, = 2, (x) constructed in this fashion depends upon three 
parameters : h, X1 and X,, which are related by Eqs. (1.5) and (1.8). As a conse- 
quence of assumption (a), from (1.6) and (1.8) we can uniquely obtain the unknown 
quantities as power series in E p] such that /L --: ho, X1 = Xi,, and X, = Xzo when 
e L_ () 

As a result of applying Rauscher’s method the original system (1.1) is reduced to an 
autonomous one at each stage of the construction. The solution method is analogous to 
the one applied in PJ which examined the trajectories of the periodic solutions of con- 

servative systems, close to rectilinear normal forms of oscillations. Consequently, the 

convergence of series (1.3) and (2.2) can be proved in some neighborhood of the origin 
in the same way as in p]. Thus, to each normal form of oscillations of the unperturbed 

conservative system there corresponds, when conditions (a) and (b) are fulfilled, a unique 
resonance periodic solution of the nonautonomous system (1.1). close to the generating 

solution and satisfying boundary conditions (1.5), (1.6). On the trajectory of the forced 
steady-state mode the nonautonomous system’s (1.1) behavior is similar to that of the 

conservative one. 
We note that the generating systems cannot be linear since for the latter all roots of 

the periodicity Eq. (1.9) are multiple by virtue of the isochronicity property. This result 
emphasizes the importance of the study of the normal oscillations of nonlinear conser- 
vative systems. 

3. As an example of the application of the results obtained we consider the deter- 
mination of the resonance modes of the following system of equations 

2” + 4a: + 2x3 + 2.4 (Z - y) + 2 (x - Y) 3 = 8 cn V (3.1) 

r/S + 4y + 2y3 + 2.4 (y - 3) + 2 (y - x) 3 = 0 

Such a type of equations arise, for example, in the problem of investigating suspension 
constructions whose principal operating elements are, from the point of view of calcu- 
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lation, flexible strings able to work only by tension. 
We restrict ourselves to the examination of the “synphase” form of the steady-state 

oscillations in (3. l), close to the normal oscillations of an unperturbed symmetric con- 

servative system. The zero-approximation solution has the form Y0 = I. In the zero 

approximation we choose the oscillation amplitude in such a way that the period of the 
natural oscillations coincides with the period of the perturbing action. 

To construct the trajectory of the desired solution in the first approximation with res- 

pect to E we use the following equation, corresponding to (2.1) : 

$- &I - (2x? + 0*5s4)] + -g- [ - 4.x - 2x3] + 2 -+ 

2.4~~ -1 - 6.4y, - 6x2y, 

where X0 is the amplitude value of 5 in the zero approximation, ha is the energy con- 
stant of the unperturbed system. We seek the solution of Eq. (3.2) in the form of series 
(2.2). satisfying the boundary conditions corresponding to (2.3). 

For a numerical calculation we take y = 2.5, 8 = 1. In the generating system a 

solution with frequency o = 2.5 is realized for the amplitude J: (0) z X = 1.225. 
In (2.2) we retain terms of no higher than the fifth degree in I. Then, by satisfying 

Eqs. (3.2) and boundary conditions in form (2.3), we obtain 

Yl = - 0.08 5 - 0.02 x3 -j- 0.001 x5 

With due regard ro the zero and first approximation, we find that the form of the 
oscillations is 

Y == 0.92 z - 0.02 x3 + 0.001 2” 

From the periodicity conditions, corresponding to (1, S), we find that the synphase form 
of the resonance oscillations are realized under the following initial conditions : 

z’ (0) = 0, z (0) EE X = 1.38, y’ (0) = 0, y (0) CFS Y = 1.24 

To estimate the accuracy of the asymptotic solution obtained, system (3.1) was investi- 
gated on an analog computer. The amplitudes of the periodic mode with the frequency 
of the external action X = 1.42, Y = 1.34. A comparison of the asymptotic reson- 

ance solution and the solution obtained on the analog computer shows that the calcula- 
tion of the zero and the first approximations ensures an acceptable accuracy of calcula- 

tion, 
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